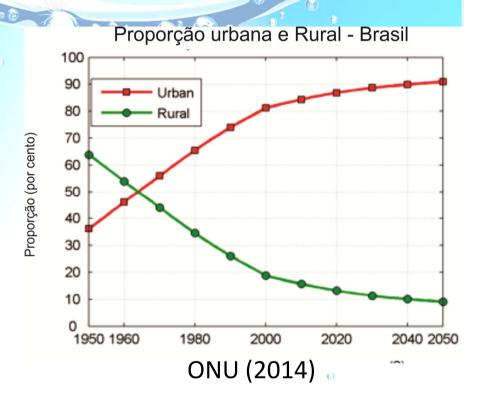


Telhados verdes: Benefícios para as cidades e para as edificações.

Adriane Cordoni Savi



Crescimento população urbana:

- •Impermeabilização;
- •Inundações;
- •Redução da área vegetada.

Arquitetura x arquitetura bioclimática

Porto Alegre/RS - 23 a 26/11/2015

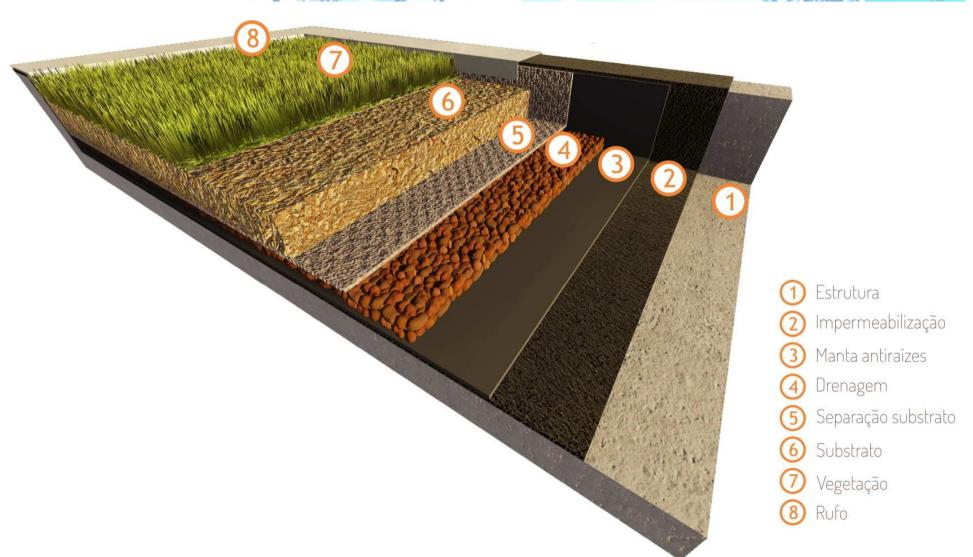
O que são telhados verdes?

É a técnica de aplicação de substrato e vegetação sobre uma camada impermeável, que tem como função substituir a cobertura de uma edificação.

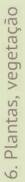
Telhados verdes

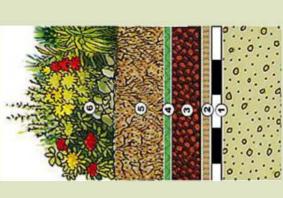
Coberturas verdes

Telhados vivos


Terraço Jardim

Jardim suspenso

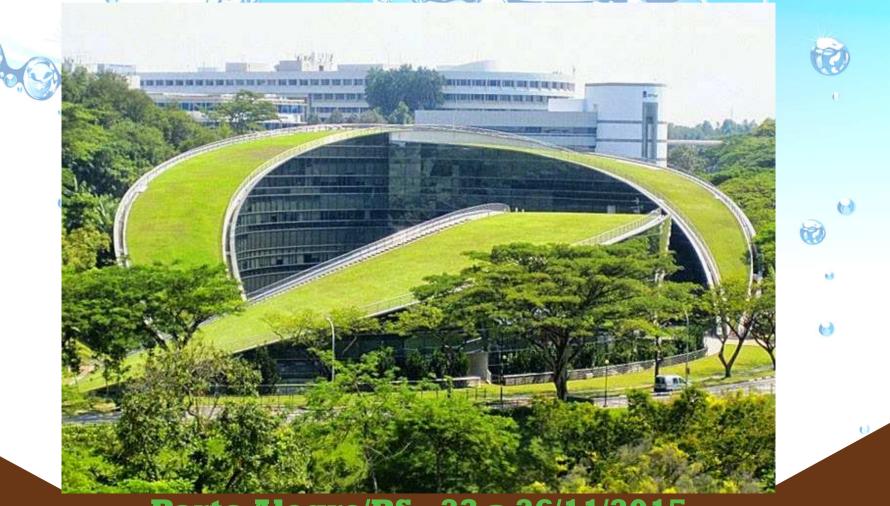

Teto verde



- 5. Substrato/solo para CV intensiva
- 4. Camada de filtro permeável às raízes
- Camada de drenagem e capilaridade
 Camada de proteção e armazenamento
 - 1. Pavimento de cobertura, isolante, impermeabilização

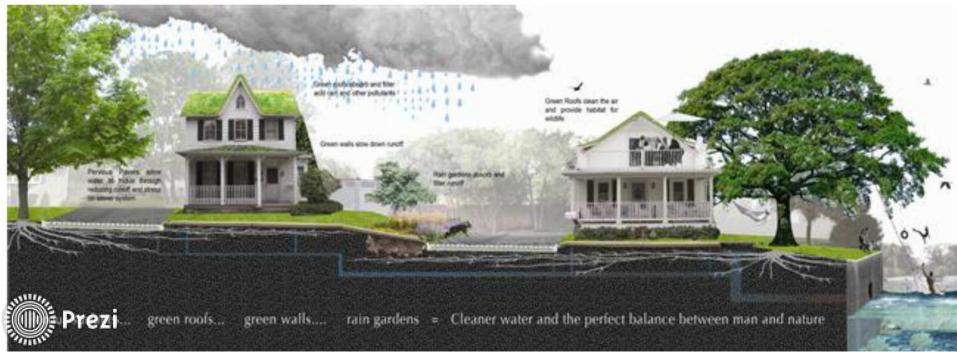
0

Semi-intensivo Intensivo


Itens	Telhado Verde extensivo	Telhado Verde semi-intensivo	Telhado Verde intensivo	
Manutenção	Baixo	Periodicamente	Alto	
Irrigação	Não	Periodicamente	Regularmente	
Plantas	Sedum, ervas e gramíneas	Gramas, ervas e arbustos	Gramado, arbustos e árvores	
Altura do sistema	60 - 200 mm	120 - 250 mm	150-400 mm	
Peso	60-150 kg/m 2	120-200 kg / m 2	180-500 kg / m 2	
Custos	Baixo	Meio	Alto	
Uso	Camada de proteção ecológica	Projetado para ser um telhado verde	Parque igual a um jardim	

Fonte: www.igra-world.com (2011) - Site traduzido.

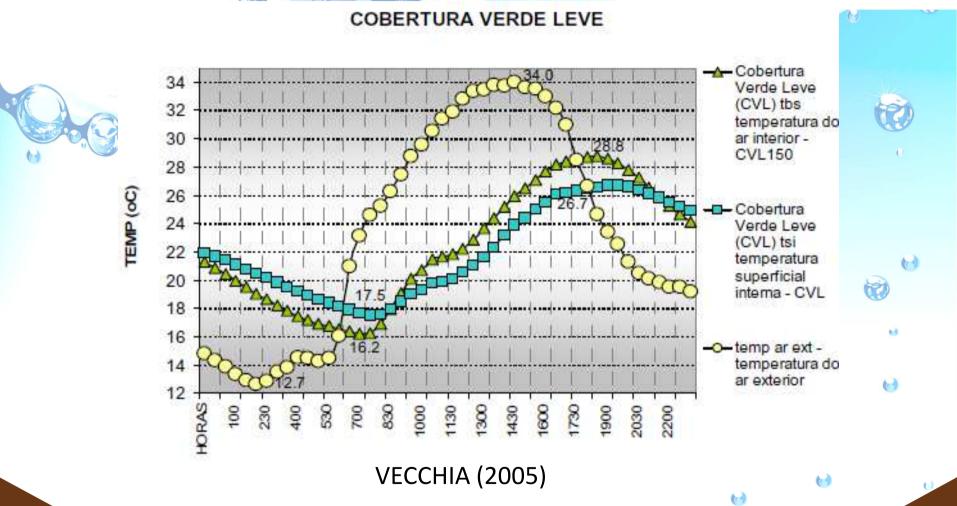
Telhado verde Extensivo

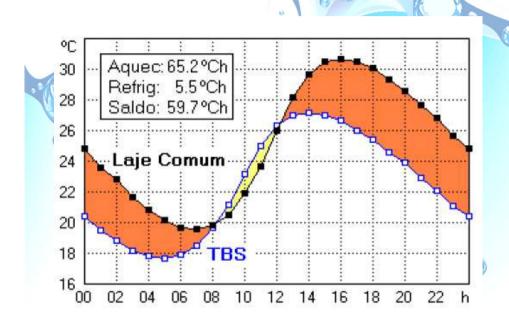


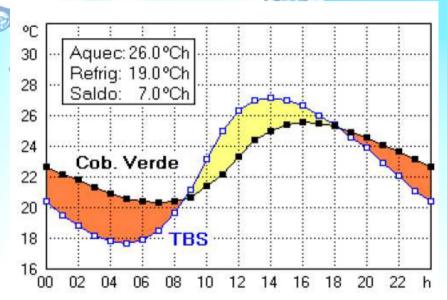
Telhado verde Intensivo

Benefícios Telhado verde

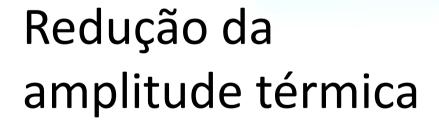
Segundo Minke (2004), a implantação de telhados verdes e jardins poderiam melhorar muito o clima das cidades, através da purificação do ar, redução de pó e variação das temperaturas nos centros urbanos, afirma ainda que a aplicação de telhados verdes em 10% a 20% nas coberturas já garantiria um clima urbano saudável.


Isolamento térmico e conservação de energia.





Proteção das edificações quanto aos raios solares

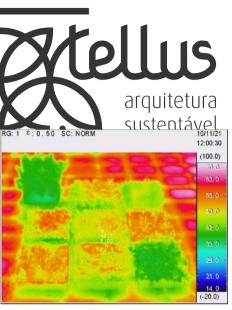


Diferenças entre a temperatura das superfícies (preto) e temperaturas do ar (azul). MORAIS e RORIZ (2004)

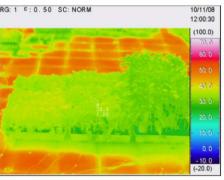
Redução das ilhas de calor

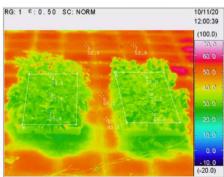
Estresse hídrico – plantas tipo CAM

Plantas mais alta - menor temp. superficial


Plantas roxas – maior temp. superficial

(LIU et al., 2012)





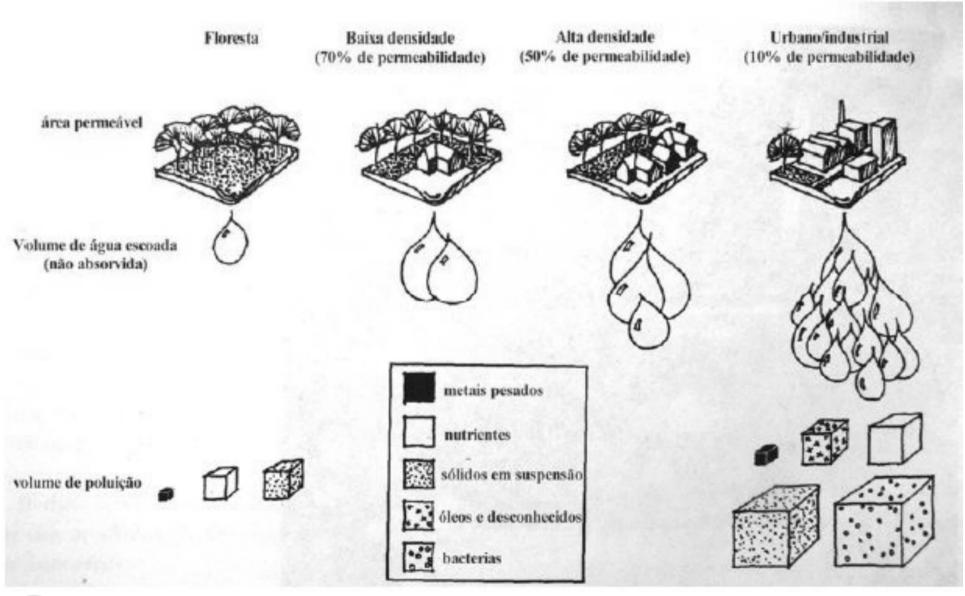
2010/11/21 12:00

2010/11/8 12:00

2010/11/20 12:00

Uma laje com aplicação de impermeabilizante na cor preta pode chegar a uma temperatura superficial, de mais de 90°C, durante o dia e próximo aos 10°C a noite. A cobertura vegetada não ultrapassaria os 25°C durante o mesmo dia de análise e durante a noite ficaria com temperatura por volta dos 15°C.

Gertis *et al.* (1997 *apud* MINKE 2004)



Retenção de água da chuva

Aumento da qualidade da água filtrada

Produção de oxigênio

Absorção de CO₂

Filtragem do ar

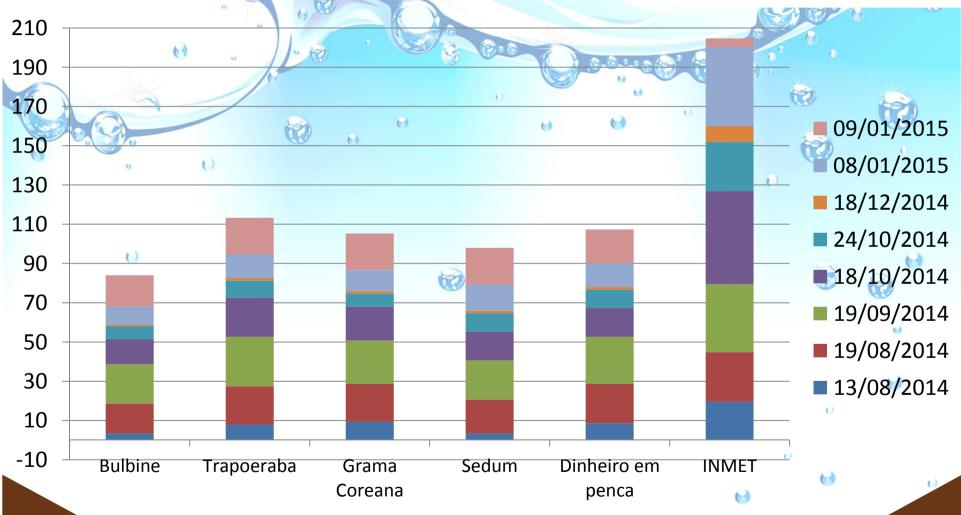
Configuram novos ecossistemas

As coberturas verdes reforçam o ecossistema para pássaros e insetos. Ao utilizar plantas nativas da região, permite, com mais facilidade que se restabeleça a presença de vida nativa.

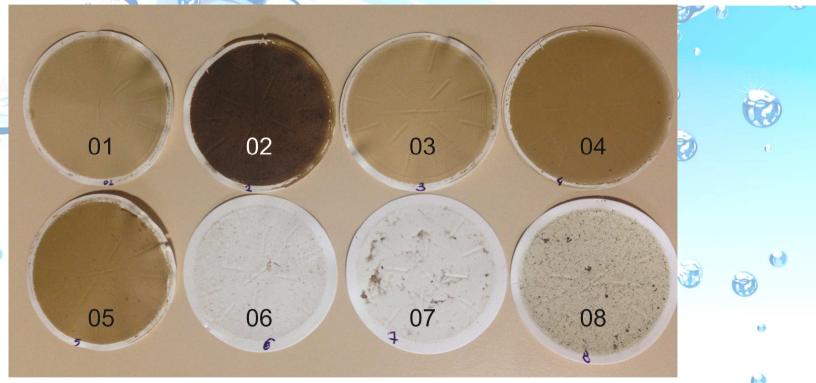
A vegetação das coberturas verdes funcionam com filtros de poeiras, fuligem e outras toxinas nocivas ao homem. As vegetações absorvem as toxinas e o CO_2 e liberam oxigênio, renovando o ar.

Estudo de caso - desempenho telhados verdes Curitiba/PR.




Retenção de água da chuva

	Bulbine	Trapoeraba	Grama Čoreana	Sedum	Dinheiro em penca	INMET
PORCENTAGEM DE RETENÇÃO DE ÁGUA	59%	45%	49%	52%	48%	0%



	Bulbine	Trapoeraba	Grama Čoreana	Sedum	Dinheiro em penca	INMET
PORCENTAGEM DE RETENÇÃO DE ÁGUA	59%	45%	49%	52%	48%	0%

01-Bulbine frutescens,

02-Tradescantia Zebrina,

03-Zoysia tenuifolia,

04-Sedum mexicanum,

05-Callisia repens,

06-laje,

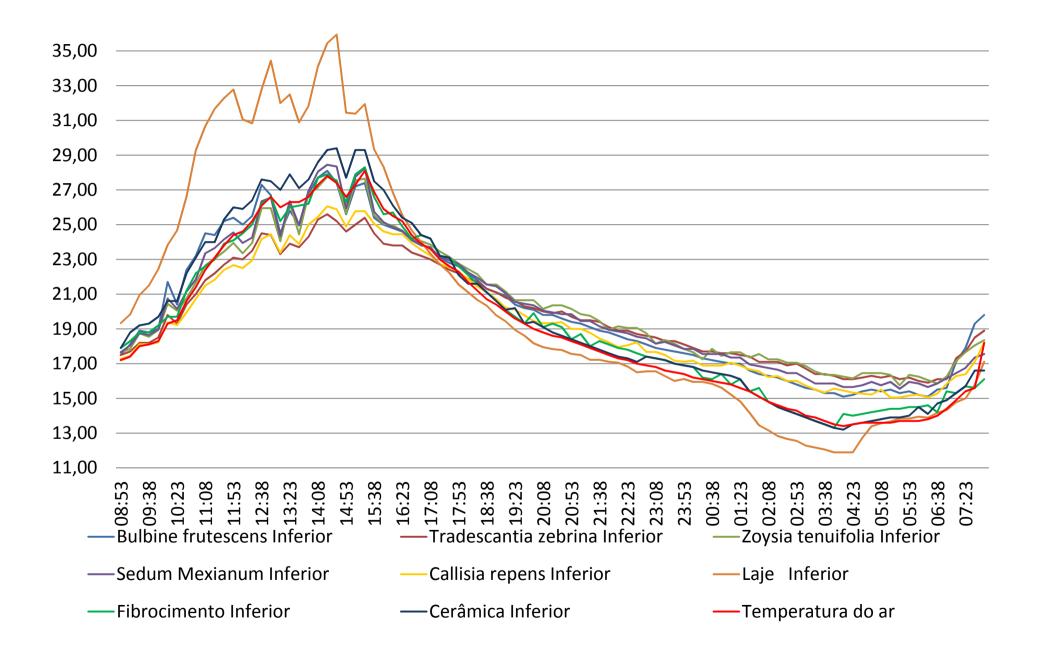
07-telhado de fibrocimento,

08-telhado cerâmico

01-Bulbine frutescens,02-Tradescantia Zebrina,

03-Zoysia tenuifolia,

04-Sedum mexicanum,


05-Callisia repens,

06-laje,

07-telhado de fibrocimento,

08-telhado cerâmico

			Sólidos		Nitrogên		
	Parâmetro		Totais	Coloração	io Total	Nitrogênio Amoniacal	Fósforo Total
		рН	mg/l	uC ou Uh	mg/l	mg/l	mg/l
	Resolução Conama 274/2000	6-9,5	-	-	-	-	-
			Até				
	Portaria N º518/04 MS	6-9,5	1.000	Até 15	-	-	
,o						Até 3,7mg/L N, para pH ≤ 7,5	
Legislação	Danaha 2 2 2 7 / 0 5 Class 2 0 4	6000	A+	Canada atau a	A+	Até 2,0 mg/L N, para	A+4 0 03
egi	Resolução 357/05 -Classe 01	6,0-9,0	Até 500		Até 1,27	7,5 < pH ≤ 8,0 -	Até 0,02
_	Resolução 357/05 -Classe 02	6,0-9,0		Até 75			Até 0,05
						Até 13,3 mg/L N, para	
						pH ≤ 7,5	
	Danalus		A+	A+		Até 5,6 mg/L N, para	444.0.075
	Resolução 357/05 -Classe 03	6,0-9,0	Até 500		4.52*	7,5 < pH ≤ 8,0	Até 0,075
	Bulbine frutescens	6,63	17	400*	4,52*	-	1,58*
	Tradescantia zebrina	6,52	164	1000*	4,93*	-	1,22*
01	Zoysia tenuifolia	6,53	20	400*	4,71*	-	1,30*
it a	Sedum mexicanum	5,66*	29	875*	4,44*	-	1,66*
Coleta 01	Callisia repens	5,91*	32	500*	3,67*	-	0,79*
0	Laje	6,77	2	12,5	1,62*	-	0,01
	Telha Fibrocimento	8,25	-	20	1,95*	-	0,06
	Telha Cerâmica	6,51	22	100*	-	-	1,32*
Coleta 02	Bulbine frutescens	6,75	17	400*	-	0,18	1,37*
	Tradescantia zebrina	6,93	51	500*	-	0,06	0,46*
	Zoysia tenuifolia	6,92	28	500*	-	0,07	0,59*
	Sedum mexicanum	6,39	25	700*	-	0,15	0,89*
	Callisia repens	6,19	36	500*	-	0,07	0,24*
Ö	Laje	6,71	11	50	-	0,11	0,02
	Telha Fibrocimento	7,41	9	20	-	0,12	0,58*
	Telha Cerâmica	6,56	14	12,5	-	0,24	0,09*

BALDESSAR, Silvia M. N. **Telhado verde e sua contribuição na redução da vazão da água pluvial escoada.**Dissertação (Mestrado em Engenharia da Construção Civil) Universidade Federal do Paraná, Curitiba, 2012.

BERNDTSSON, J. C. Green roof performance towards management of runoff water quantity and quality: A review. **Ecological Engineering**, 351-360, 2010.

BIANCHINI, Fabricio; HEWAGE, Kasun. How "green" are the green roofs? Lifecycle analysis of green roof materials. **Building and Environment,** Canadá, V 48 Pg 57 a 65. Ago, 2011.

GETTER, Kristin L; ROWE, Bradley, D; ROBERTSON, Philip G.; CREGG, Bert M.; ANDRESEN, Jefrey D. Carbon Sequestration Potential of Extensive Green Roofs. **Environmental. Science. Technolical**. 2009, 43, 7564–7570.

JIM, C. Y. Passive warming of indoor space induced by tropical green roof in winter. Energy, 272-282, 2014.

KOSAREO, Lisa; RIES, Robert.Comparative environmental life cycle assessment of green roofs.**Building and Environmental.** Pg 2606 – 2613. 2007.

LIU, T. C., SHYU, G. S., FANG, W. T., LIU, S. Y., & CHENG, B. Y. Drought tolerance and thermal effect measurements for plants suitable for extensive green roof planting in humid subtropical climates. **Energy and Buildings**, 180-188, 2012.

MINKE, G. Techos verdes - Planificación, ejecución, consejos prácticos. Uruguay: Editora Fin del Siglo, 2005.

MORAIS, Caroline S. de, RORIZ, Maurício. Comparação entre os desempenhos térmicos de cobertura ajardinada e laje comum em guaritas. ENCAC –COTEDI. Curitiba. Nov, 2004

NIACHOU, A., PAPAKONSTANTINOU, K., SANTAMOURIS, M., TSANGRASSOULIS, A., E MIHALAKAKOU, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy and Buildings, 719 - 729, 2001.

SAADATIAN, O., SOPIAN, K., SALLEH, E., LIM, C. H., RIFFAT, S., SAADATIAN, E., et al. A review of energy aspects of green roofs. Renewable and Sustainable Energy Reviews, 155-168, 2013.

VECCHIA, Francisco. Cobertura Verde Leve (CVL): Ensaio Experimental. Encac, Enlacac. Maceió, out. 2005. Disponível em: http://www.eesc.usp.br/shs/attachments

/121_COBERTURA_VERDE_LEVE_ENSAIO_EXPERIMENTAL.pdf> Acesso em: 31 ago. 2012.

WONG, Nyuk H.; TAY, Su F.; WONG, Raymond; ONG, Chui L., SIA, Angelia. Life cycle cost analysis of rooftop gardens in Singapore. Building and Environment. V 38 499 – 509 Singapore, Jul, 2002.

WONG, N. H., CHEONG, D. K., YAN, H., SOH, J., ONG, C. L., e SIA, A. The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy and Buildings, 353 - 364, 2003.

WONG, N., CHEN, Y., ONG, C., & SIA, A. Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 261-270, 2003.

Adriane Cordoni Savi

adriane@tellus.arq.br

(41) 84218244